§ 25.333 - (iv) In cases where the flight deck pitch control motion may be affected by inputs from systems (for example, by a stick pusher that can operate at high load factor as well as at 1g), then the effects of those systems shall be taken into account. - (v) Airplane loads that occur beyond the following times need not be considered: - (A) For the nose-up pitching maneuver, the time at which the normal acceleration at the center of gravity goes below 0g; - (B) For the nose-down pitching maneuver, the time at which the normal acceleration at the center of gravity goes above the positive limit load factor prescribed in §25.337; - (C) tmax. ## §25.333 Flight maneuvering envelope. - (a) General. The strength requirements must be met at each combination of airspeed and load factor on and within the boundaries of the representative maneuvering envelope (V-n diagram) of paragraph (b) of this section. This envelope must also be used in determining the airplane structural operating limitations as specified in §25.1501. - (b) Maneuvering envelope. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-86, 61 FR 5220, Feb. 9, 1996] ## §25.335 Design airspeeds. The selected design airspeeds are equivalent airspeeds (EAS). Estimated values of V_{S0} and V_{S1} must be conservative. - (a) Design cruising speed, V_C . For V_C , the following apply: - (1) The minimum value of V_C must be sufficiently greater than V_B to provide for inadvertent speed increases likely to occur as a result of severe atmospheric turbulence. - (2) Except as provided in §25.335(d)(2), V_C may not be less than $V_B+1.32~U_{REF}$ (with U_{REF} as specified in §25.341(a)(5)(i)). However V_C need not exceed the maximum speed in level flight at maximum continuous power for the corresponding altitude. - (3) At altitudes where V_D is limited by Mach number, V_C may be limited to a selected Mach number. - (b) Design dive speed, V_D . V_D must be selected so that V_C/M_C is not greater